
DOI: 10.1007/s10910-006-9060-6
Journal of Mathematical Chemistry, Vol. 41, No. 1, January 2007 (© 2006)

Fast marching method for calculating reactive
trajectories for chemical reactions

Bijoy K. Dey,1,2 Stuart Bothwell,1 and Paul W. Ayers1,∗
1Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, ON, Canada
2Institut für Theoretische Physik, Freie Universität Berlin, Arimallee 14, 14195 Berlin, Germany

E-mail: ayers@mcmaster.ca

Received 8 September 2005; revised 8 December 2005

We present a method for computing classical Newtonian trajectories that minimize
the path length or transit time from reactant to product. Our approach is based on a
generalization of the fast-marching method, which allows us to construct the solution
of the Hamilton-Jacobi equation for the action that optimizes the desired quantity. The
resulting “reactive paths” can be interpreted as reaction coordinates but, unlike more
conventional choices, they contain dynamical information about the chemical system
of interest.
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1. Introduction

The chemical reaction path – defined as the sequence of molecular con-
formations linking reactants and products through reactive intermediates and
transition states – is among the most important and fundamental concepts in
chemistry. Given a reaction path, one can determine the mechanism of a reac-
tion in atomic detail and infer information about the reaction’s thermodynamic
and kinetic characteristics.

Atomic detailed simulations of chemical dynamics can be performed either
by computing molecular dynamics (MD) trajectories [1–3] or by computing the
reaction path (RP) [4–23]. Computing molecular dynamics trajectories is essen-
tially an initial value problem: starting with some initial momentum vector
(usually chosen at random from a Boltzman distribution) and initial position
vector (usually chosen to be a conformation corresponding to the reactants), one
solves the Newton’s equation of motion for the position coordinates as a func-
tion of time. Dynamical properties can then be extracted from the simulations.
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However, MD simulations are limited to time-scales much shorter than the rate
of a typical chemical reaction. This is a serious drawback of MD simulation, and
it is often difficult to find MD trajectories linking a specified initial (reactant)
and final (product) configuration. However, because the actual time a trajectory
spends crossing from the reactant to the product well is usually much shorter
than the total length of the trajectory, carefully choosing the initial momentum
so that one finds a “ballistic” trajectory can overcome the time-scale problem.

The second approach is posed as a two-point boundary value problem
where an initial and a final configuration are given and one seeks out a path
connecting the two configurations. These boundary points can be specified as a
reactant and product configuration or a transition state configuration and reac-
tant (product) configuration (as in the intrinsic reaction coordinate [6–8]). The
calculated path provides a qualitative description of the structural changes as
function of the reaction coordinate. Parameterizing the reaction path defines
the reaction coordinate Q(s) =[q1(s), . . . , qN (s)]T where s is the parameter.
Although the reaction path approach is immune from the time scale limitation
of MD simulation, the ruggedness of the potential energy can severely limit the
approach since most algorithms to compute RP rely on the explicit use of a spa-
cial step. In addition, because using reaction-path methods require approximate
structures for the reactant, product, and key intermediates, these methods are
not directly applicable to the reactions where theoretical approaches would be
most helpful – that is, reactions where even the coarsest mechanistic details are
not known.

Whereas dynamical properties can be easily extracted from the MD tra-
jectories by averaging over time, the computed reaction paths are difficult to
convert to dynamically useful properties. (This would not be true of course, if
one ran many reactive trajectories and constructed an ensemble. But this is not
commonly done.) The importance of the reaction path comes in determining
the reaction rate [24, 25] where the reaction paths describe the mechanism of
the reaction and provide critical informations about the reaction intermediates,
transition states and barrier heights. Reaction kinetics are based either implic-
itly (transition state theory [4]) or explicitly (variational transition state theory
[4]) on the knowledge of the reaction paths. These theories require only the local
information about the potential energy surface (PES) along the reaction path.
(This, partially overcomes the dimension problem for a medium-sized or large
molecules, since it is impossible to fully calculate their PES).

Both MD simulation and RP approach are useful in chemical dynamics.
Hence it is desirable that we find a computational method that could combine
the merits of both approaches, so that a computed reaction path (which could
be used in transition state theory) would be a solution of Newton’s equations of
motion for the system, thereby yielding dynamic information. The present paper
is in this direction.
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There are many algorithms for computing reaction paths. Among the more
popular choices are (a) direct geometric search of the PES coupled with energy
minimization [6,7,9–12] (they are the geometrically defined paths meaning that
only properties of the PES are taken into account, but no dynamic behavior of
the molecule is taken into consideration.), (b) the extremization of a functional
(e.g., the mean first passage time [13,14], diffusive flux [15,16]) along the path,
(c) constructing a trial path and subsequent refinement of it based on the opti-
mization of a functional defining the optimal path [17–20,23], (d) calculating the
optimal reaction path [21,22] by maximizing the conditional probability for mov-
ing between two different states defined in Langevin dynamics [26]. These meth-
ods require approximate knowledge of the initial, final, and transition states. In
addition, these reaction paths are not Newtonian trajectories.

Ideally, we would like to start with the knowledge of only the reactants and
determine the feasible product state, reactive intermediate(s) (if any), transition
state(s) and the reaction mechanisms. We recently proposed an efficient method
[27] for computing the reaction path by solving the Hamilton-Jacobi equation
for the least-action (and a similar equation for least time) where only an initial
configuration (reactant) is known. The key innovation was the use of the fast
marching method [28–30], after which the reaction products and mechanism can
be found from the evaluated least-action or the least-time level curves. However,
the least-time reaction paths are not true trajectories in the Newtonian sense and
the least-action paths are high-energy paths. In this paper we generalize the fast
marching method to compute reaction paths that are trajectories, thereby obtain-
ing reaction paths that are solutions to Newton’s eqautions of motion.

The proposed method works by solving the classical Hamilton-Jacobi (HJ)
equation for the action S(Q0, Q) function corresponding to the transition from
an initial configuration (Q0) to any other configuration (Q) accessible classically.
However, unlike our previous work, which constructed the least action solution
to the HJ equation, here we wish to compute a stationary action solution and, in
particular, the solution that takes us from Q0 to Q in the least time. To accom-
plish this, from the action function calculated over the discrete grid we evalu-
ate the time function τn(Q0, Q) that follows the ray that emanates from Q0 and
ends at Q. A combination of the upwind difference scheme, time sorting (these
two define a modified fast marching method, modified because here the sorting
is performed based on least-time instead of least-action) and ray tracing (this
is used to evaluate the function τn) evaluates the action and least-time over the
entire grid. The reaction paths are then calculated from the level curves of the
action following the direction of unit (outward) normal −∇S/|∇S| for points
on the action level curves (this is termed as back-tracing). Since the action sat-
isfies the HJ equation, the reaction paths constructed by this method are true
trajectories and can be obtained, for example, by solving Newton’s equations of
motion for the forward and backward trajectories whenever the initial position
and momentum vector (∇S), is defined on the reaction path. In the next section,
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we will present the generalized fast-marching method in more detail, expound-
ing on each facet of the algorithm we have just sketched. Section 3 then presents
numerical examples, while section 4 concludes.

2. Theory

2.1. Hamilton-Jacobi equation

The classical action function for a path from configuration Q0 at time t0 to
configuration Qf at time tf is given by

S(Q0(t0), Q f (t f )) =
∫ Q f

Q0

P · dQ, (1)

where Q = (q1, q2, . . ., qN )T (qi = √
mi xi denotes the atomic positions in mass-

weighted coordinates) and P denotes the corresponding momentum vector.
Equation (1) is not of much practical utility since one must know the path along
which to evaluate the integral. However, a differential equation for the action
can be easily derived from equation (1); it is this equation that we solve using
the fast marching method [27–30]. First, rewrite equation (1) as

S(Q0(t0), Q f (t f )) = 2
∫ Q f

Q0

T (Q(t))dt = 2
∫ Q f

Q0

(E − V (Q(t)))dt. (2)

In deriving equation (2), we used the relations T = 1/2PT M−1P for the kinetic
energy and P = MdQ/dt for the momentum vector, where M is the mass matrix,
V(Q) is the potential function, and E is the total energy of the system. The time
variable in the above equation is not an independent variable because it depends
on the path. A rigorous definition of path can be made by parameterizing the
curve using the line element s(Θ), for the trajectory (Θ denotes the parameteri-
zation of the path.) [31, 32]. The time it takes for a particle to cross a given point
on the curve is related to the velocity, ds(Θ)/dt at that point. At any point on
the curve 2T = (ds/dt)2,

dt = |ds(Θ)|√
2(E − V (Q(s)))

. (3)

Since |ds| = √∑
(dsi )2 and dsi = (∂si/∂Θ)dΘ we obtain

dt = |∇s(Θ)|√
2(E − V (Q(s)))

dΘ, (4)



B.K. Dey et al. / Fast marching method 5

where |∇s(Θ)| =
√∑

i (∂si/∂Θ)2 and si corresponds to the component of s along
qi . Equation (2) now is rewritten as

S(Q0(Θ0), Q f (Θf )) =
∫ Θf

Θ0

|∇s(Θ)|
(2(E − V (Q(s))))−1/2

dΘ (5)

One immediately obtains the differential form for the above integral equa-
tion (equation (5)) (see ref. [33]). (From now on, we simply write S(Q) for
S(Q0(Θ0), Q f (Θ f )) for a fixed initial configuration.)

|∇S(Q)|√
2(E − V (Q))

= 1, or ∇S(Q) · ∇S(Q) = 2(E − V (Q)). (6)

This is the Hamilton-Jacobi equation for the action, where ∇S is the generalized
momentum vector, p =∇S.

Once the path has been determined we evaluate the change in various quan-
tities along the path. For example,

τn(Q0(t0), Q f (tf )) =
∫ Θf

Θ0

|∇s(Θ)|
(√

(2(E − V (Q(s))))
)n

dΘ. (7)

The corresponding differential equation is given by

∇τn(Q) · ∇τn(Q) = (2(E − V (Q)))n, (8)

where n can be any real or integer value. Thus, a series of function can be evalu-
ated along the path for different values of n; e.g., for n = −1 the function is the
travel time from Q0 to Q f (cf. equation (3)). Some other values of n also have
special significance. The n = 0 case of equation (7) clearly corresponds to arc-
length, so solving equation (8) with n = 0 gives the least-distance path. (The level
curves of τ0 are spheres.) The n = − 1 case corresponds to least-time, so solving
equation(8) with n = −1 gives brachistochrones. The n → −∞ case corresponds
to least-potential, so solving equation (8) with n → −∞ gives the minimum
energy path (intrinsic reaction coordinate). Although the above formulation is
only valid for mass-weighted Cartesian coordinates, one can easily derive the
corresponding equations for a general curvilinear coordinate system.

The Hamilton-Jacobi equation (equation (3)) describes a wave front prop-
agating [30] with the local “speed” 1/

√
2(E − V ). Wave fronts of the action are

represented as level curves, ΓS(a), defined as the set of all Q ∈ RN for S(Q) = a.
Symbolically, ΓS(a) = {Q ∈ RN ; S(Q) = a}. The direction of propagation of the
wave front is always perpendicular to the front (along the outward-pointing nor-
mal of the level curve) and the speed of a given surface element of the wave front
is given by the local value of the speed function, 1/

√
2(E − V (Q)). Sometimes

it is more useful to explain results in terms of the “slowness” function, which is
simply the reciprocal of the “speed” function.
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2.2. Generalized fast marching method

The fast marching method (FMM) [28–30] finds the solution of the eiko-
nal equation, |∇U |/F = 1, that minimizes U (Q)−U (Q0), where Q0 is the initial,
or source, point. The generalized fast marching method (FMM), also solves the
eikonal equation, |∇U |/F = 1, but instead of constructing the minimum U (Q)−
U (Q0) solution, constructs the solution that minimizes τn(Q) − τn(Q0), where
τn(Q) is given by equation (7). Clearly, when τn = U the method reduces to the
usual FMM.

Here we describe how the generalized FMM algorithm can be used to
compute reaction paths that are true molecular dynamics trajectories. We pres-
ent the case where the configuration of the molecular system is given by a
two-dimensional vector, that is, Q =[q1, q2]T =[x, y]T . (The generalization to an
N-dimensional system is straightforward.) The eikonal equation is equivalent to
the Hamilton-Jacobi equation (equation (6)), which we write in a general form as

α

(
∂S

∂x

)2

+ β

(
∂S

∂y

)2

= 2[E − V (x, y)], (9)

where α = β = 1 for equation (6). The generalized FMM algorithm can be
described in three steps: initialization, launching and termination.

2.2.1. Initialization
(a) Discretize the 2-D system as x1, . . ., xN1 , y1, . . ., yN2 where xi = xL + i × dx
and yi = yL + i × dy, and dx and dy denote the step size along the x and y
coordinates respectively. The variables dx and dy are given as dx = (xR − xL)/N1
and dy = (yR − yL)/N2 respectively, with (xL , xR)× (yL , yR) defining the domain
where generalized FMM is performed.
(b) Define an initial level curve ΓS(0) as a fixed point Q0 = [x0, y0]T representing
an initial configuration of the reacting system; here S = 0 and τn = 0. Find the
point, (i0, j0), that is closest to the desired initial configuration, Q0. For other
points, S and τ (for simplicity we ignore the subscript n of τn) are assigned a
large number.
(c) Construct the first narrow band (see figure 1) (Υ1) around the point (i0, j0).
This narrow-band is comprised of eight neighboring points, Υ1 : {(i0 − 1, j0 −
1), (i0−1, j0), (i0−1, j0+1), (i0, j0−1), (i0, j0+1), (i0+1, j0−1), (i0+1, j0), (i0+
1, j0 + 1)}. (These eight points are shown as cross marks in figure 1.) The values
of S (or τ ) in the first narrow-band are assumed known or are calculated from
equation (5) (for τ equation (7)) by approximating the path-integrals.
(d) Tag different points as alive, close and far as follows

Tagged points =



alive, for source
close, for first narrow-band(Υ1)

far, for others
.
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Figure 1. Schematic diagram depicting narrow bands during nine stages. The grid points (crosses
and crosses in a circle) on the broken line constitute the narrow band. The first narrow band (first
column, first row) is the one obtained at the initialization. Here the grid points with open circle,
cross, cross in the circle, black dot and black dot in the circle represent far points, close points where
the function value is not updated, close points where the function value will be updated, alive points,
and the initial point (reactant conformation). The label “s” refers to the point with the smallest
function value among the close points. At the end of every stage the point labeled “s” is tagged as

an alive point.
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Thus, we have one alive point, eight close points and (N1 × N2 − 9) far points in
the initialization step.

2.2.2. Launching
The launching step expands the narrow-band beyond Υ1, successively add-

ing far points to close and close points to alive. This is done as follows:

(a) Select the trial point (it , jt ) from Υ1 for which the value of τ is the small-
est (in figure 1, label s denotes the trial point with the smallest value of τ )
and tag it as alive. (In the conventional FMM [30] the trial point is the one
for which the value of S is the smallest. [27] Here, however, we wish to con-
struct least-τ curves (and not least-action curves), and so we take the point
with the smallest value of τ instead.)

(b) Construct the next narrow-band, Υ2. Υ2 consists of all the points in Υ1
except the trial point we just added to alive; in addition, Υ2 includes any of
the four nearest neighbors that are classified as far points. (Points that are
nearest-neighbors of the trial point but which are already classified as alive
are not included. Points that are nearest-neighbors of (it , jt ) that are already
classified as close are “inherited” by Υ2 because they are part of Υ1. The
points in Υ2 are the close points. A schematic of the second narrow band is
shown in the first row and second column of figure 1. Here the trial point is
tagged as alive, marked as black dot, and removed from first narrow band.
As seen in figure 1 among the four neighbors of this trial point, one is alive,
one is far and two are close. Hence in this example, the second narrow band
consists of 8 − 1 + 1 = 8 close points (figure 1).

(c) Update S and τ at (it − 1, jt ), (it + 1, jt ), (it , jt − 1), (it , jt + 1) if they are far
or close points. The updating procedure is described in section 2.3.

(d) Iterate (a) and (b) and (c) by replacing Υk−1 of step (a) by Υk of step (b),
where k indicates iteration number.

2.2.3. Termination
(a) The process terminates when ΥM is totally empty. At this stage every

grid points is either alive or classically forbidden. As an alternative, we could
designate some stopping condition. For example, when we know the product of
the chemical reaction, we might stop once the molecular conformation corre-
sponding to this product has been added to alive. Alternatively, we could stop
the procedure when we have located a well in the potential energy surface with
a sufficiently low energy, as this would probably indicate the formation of the
product or, at least, the formation of a very stable reaction intermediate, which
might be of independent interest.

As described above, the trial point is chosen to have the smallest τ among
all values in a given Υk, k = 1, . . . , M . This implies that the values of τ in a nar-
row band, Υk , should be sorted from the smallest to the largest. This can be
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computationally expensive since the sorting needs to be done for each narrow
band and both the number of points in each narrow band and the number of
narrow bands are usually large numbers. When a binary tree sorting algorithm
is applied [34], the cost of sorting the points is O(log2 NB) where NB is the num-
ber of grid points in the narrow band. The total cost of the algorithm is thus of
order N log2 N , where N is the number of conformations (in this implementa-
tion, the number of grid points). This is (at least to within a factor of K log2 N ,
where K is a constant) the least cost attainable for this problem.

2.3. Updating (Step 2(c))

2.3.1. Updating S
Now we elaborate on the updating of S and τ mentioned in Step 2 (c). For

this, we consider a point (i,j) where S and τ will be recomputed. As discussed
in the previous section and illustrated in figure 1, such points will be (a) adja-
cent to the trial point (i.e., one of the four points (it±1, jt ), (it , jt±1)), (b) clas-
sically allowed (so Vi j < E), and (c) downwind from (it , jt ) (i.e., (i, j) is close,
and not alive). As mentioned in the introduction, in the updating procedure we
first compute S by solving the Hamilton-Jacobi equation (equation (6)) and then
we use the information about S and its gradient to calculate τ using a ray-trac-
ing scheme.

To update the action, S, we rewrite the Hamilton-Jacobi equation in dis-
crete form:

α(D̂x Sij )
2 + β(D̂y Sij )

2 = 2[E − V (xi , y j )]. (10)

Here Sij is the action at (i, j), and D̂x and D̂y are the upwind finite difference
formulas [30], defined as

|D̂x Sij | = max(D−
x Sij , −D+

x Sij , 0), (11)

|D̂y Sij | = max(D−
y Sij , −D+

y Sij , 0). (12)

Here D±
x and D±

y are the forward (+) and backward (−) difference operators
defined as

D±
x Sij = ± Si±1, j − Sij

�x
(13)

D±
y Sij = ± Si, j±1 − Sij

�y
. (14)

Only four points appear when solving the above HJ equation (equation (10))
which are (i − 1, j), (i + 1, j), (i, j − 1) and (i, j + 1). These four
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points connected by grid line segments form four quadrants (a triangle) as
�1: [(i + 1, j), (i, j + 1), (i, j)], �2: [(i − 1, j), (i, j + 1), (i, j)], �3: [(i − 1, j),
(i, j−1), (i, j)] and �4: [(i+1, j), (i, j−1), (i, j)]. The conventional FMM solves
the quadratic equation (equation (10)) given by each quadrant and then chooses
the smallest of these values as the updated value of S. That is,

Supdated
ij = min[Sij (�1), Sij (�2), Sij (�3), Sij (�4)], (15)

where Sij (�k), k = 1, . . . , 4 is the largest real solution of the quadratic equation
for the kth quadrant. Often, some quadrants will not contribute to the updating
of S because the upwind difference formulas (equations (11) and (12)) require
that only quadrants with vertices that are upwind to (i, j) can affect the value of
the action. That is, because only vertices whose action is smaller than the action
at (i, j) can be used in the updating procedure, sometimes one or more of the
quadrants does not furnish a valid update. (An alternative method, sometimes
preferable, is to only allow alive points to be used for updating the value. This
gives the same results as the procedure presented here, but the binary sort proce-
dure takes longer because the points are more “out of order” with this method
than they are with the usual procedure).

It now remains to describe how the value of the action is updated from
each quadrant. Taking the first quadrant as an example, we see that there are
two cases:

(a) if only (i + 1, j) vertex is upwind, then we use the largest solution of

α

(
S − Si+1, j

�x

)2

= 2[E − V (xi , y j )] (16)

for the updated action.
(b) If both (i + 1, j) and (i, j + 1) are upwind, then the updated S is given by

the largest real solution of

α

(
S − Si+1, j

�x

)2

+ β

(
S − Si, j+1

�y

)2

= 2[E − V (xi , y j )]. (17)

2.3.2. Updating τ

In the “generalized” FMM, we wish to update the action so that some
other quantity, τ , is minimized. Our notation is as follows: the action at (i, j) is
computed using the value from at most two upwind points; in figure 2, the point
at which we are computing the action is point C and the upwind points are A
and B). For example, for quadrant �1, A is (i +1, j) and B is (i, j +1). In figure
2 Q0 is a fixed initial configuration. A ray emanates from the initial point, passes
through the line segment AB defined by the points [xA, yA]T and [xB, yB]T and
passes through the point C (where the value of τ will be calculated). We assume
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Figure 2. Schematic diagram for evaluating τ . Here A and B are near and/or alive points and C is
a near (but not alive) point. The ray from D to C is a stationary-action path in the finite difference

representation.

that the ray from Q0 crosses the line segment AB at the point D. Using Taylor
series expansion (up to first order) we now write τ at C as

τC = τD + |C D||∇τC . (18)

Using equation (8) we rewrite this as

τC = τD + |C D|
(√

2(E − VC)
)n

, (19)

where VC is the potential at the point D. Thus, from the value of τD at point D
and the Euclidean length of CD line segment we can calculate τC . To do this we
parameterize the function value at D by a linear interpolation formula

τD = wτA + (1 − w)τB (0 � w � 1). (20)

Define �r as the vector (figure 2) tracing the point in the line segment CD so that
when the point is D we have �r = �rD. This vector �r can be expressed as

�r = �rC + l ĝC , (21)

where l defines the distance between C and D (l = |C D|) and ĝC = [gx
C , gy

C ]T with
gx

C = − Dx S/|∇S||C and gy
C = − Dy S/|∇S||C is the local unit normal vector



12 B.K. Dey et al. / Fast marching method

along the line segment CD. (Dx and Dy are given by equations (13) and (14)
respectively.) Since we have parameterized the line segment AB with respect to
the parameter w the vector �rD is given by

�rD = w�rA + (1 − w)�rB . (22)

We now evaluate l and w so that �r = �rD. This is done by solving the simulta-
neous equations

xC + lgx
C = wxA + (1 − w)xB (23)

xC + lgy
C = wyA + (1 − w)yB . (24)

Knowing w and l we can immediately compute τD and then τC from equation
(18). Note that if either A or B has a larger value of the action than we find at
C, then we should set w so that this point is not used to compute τC . Thus, if
A is not upwind then w = 0 and l = (yB − yC)/gy

C and if B is not upwind then
w = 1 and l = (xA − xC)/gx

C .
In contrast to the preceding method for computing the action at the point

(i, j), the generalized fast-marching method proceeds as follows. While previ-
ously (cf. section 2.3.1) we computed the value of the action from each quad-
rant, now we will compute both the value of the action and the value of τ from
each quadrant. Also unlike the previous procedure, we select the update with the
smallest value of τ (as opposed to the smallest value of S). This constructs a sta-
tionary-action solution (stationary-action because the path is selected so that the
Hamilton-Jacobi finite-difference equation is satisfied) with least-τ (because both
the tentative value from the search over quadrants and the heap search is done
in a way that minimizes τ ).

2.4. Back-tracing: finding true dynamical paths

Having obtained the stationary action and least-τ surfaces we calculate
reaction paths connecting a final state configuration Qf to Q0 by following the
direction of a series of normal vectors, −u∇S/|∇S|, of length u. Thus, for cal-
culating the path we calculate the vector u∇S/|∇S| of length u at point Q f fol-
lowed by the subsequent evaluation of the action at Q = Q f − u∇S/|∇S|, where
at every step Q f is replaced with Q. This sequence of vectors of length u define
the desired path. Choosing different values of n in equations (8) and (18) we
can calculate different reaction paths, all of which correspond to true dynamical
paths since they follow from solving the Hamilton-Jacobi equation. Therefore,
the reaction paths computed by this generalized FMM can also be computed by
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solving Newton’s equation of motion

Q̈ = −h(Q), h(Q) =
[
∂V

∂x
,
∂V

∂y

]T

(25)

with the initial conditions (the initial conditions are defined at the final configu-
ration for the path Q f −→ Q0)

Q(t f ) = Q f , and Q̇(t f ) = |∇S|Q f . (26)

From these initial conditions, MD trajectories, Q(t), are easily calculated using
standard integrators like the velocity-Verlet algorithm. As we shall see in the
next section, the trajectories obtained by solving Newton’s equations match the
reaction paths evaluated by the generalized FMM.

3. Numerical examples

3.1. Application to a four-well potential surface

We now examine the effectiveness of our method in computing true reaction
paths for a two-dimensional potential surface (figure 3) which has four local min-
ima (αi , βi ), i = 1, . . . , 4. This potential was introduced as a nontrivial test for
reaction path calculation in our previous work [27]. Here we are mainly inter-
ested in the reaction path (and the corresponding MD trajectory) between two
neighboring local minima on the energy surface. Stringing together such paths
provides a reaction path between any pair of minima on the energy surface. In
figure 3, A and B are two extreme minima where VB < VA and so A and B can
be taken to represent reactant and product, respectively. C and D have higher
energy than either A or B and serve as reactive intermediates. Any two neighbor-
ing minima are separated by a barrier which serves as the transition state for the
neighboring minima. Thus, the potential has all the features necessary to dem-
onstrate the effectiveness of the present method.

To start the generalized FMM and back-tracing we calculate the action and
τ at the first narrow band by approximating the integrals

∫ Υ1
Q0

√
2(E − V )dl and∫ Υ1

Q0
[√2(E − V )]ndl, respectively, where the upper limit Υ1 represents any point

in the first narrow band. Once the initialization stage is complete, we proceed to
the launching step where we construct the next level of narrow band by updating
S and τ . This process continues until the last narrow band is completely empty,
and S and τ are known over the classically allowed portion of the discrete grid.
From the level curves of S and τ we then evaluate the reaction path. In figure 4
and 5 we have identified three different paths connecting two nearest local min-
ima, viz., C −→ A, D −→ C and D −→ B. The computation of these paths
requires selecting a point (the final state configuration) in the potential energy
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Figure 3. A contour plot of the potential that we employed as one of the demonstrations of the

generalized FMM calculations. The potential is of the form: V (x, y)= V0 + a0e−(x−bx )2−(y−by)
2 −∑4

l = 1 ai e−σ x
i (x−αi )

2−σ
y
i (y−βi )

2
, where the parameters are V0 = 5.0 kcal/mol, a0 = 0.6 kcal/mol,

bx = 0.1 Å, by = 0.1 Å, a1 = 3.0 kcal/mol, a2 = 1.5 kcal/mol, a3 = 3.2 kcal/mol, a4 = 2.0 kcal/mol,
σ x =[0.3, 1.0, 0.4, 1.0]T Å−2, σ y =[0.4, 1.0, 1.0, 0.1]T Å−2, α =[1.3, −1.5, 1.4, −1.3]T Åand
β =[−1.6, −1.7, 1.8, 1.23]T Å. The four local minima are A (1.29, −1.65), B (1.4, 1.78), C
(−1.29, −1.53) and D (−1.17, 1.56) and T1, T2, T3 and T4 represent four transition states connect-

ing the local minima.

surface and evaluating the normal vector ∇S/|∇S| at that point. ∇S was evalu-
ated with the Shepard interpolation method [35, 36].

The paths in figure 4 are true least-time (n = − 1 in equation (8)) paths
because they correspond to solutions of Newton’s equation of motion. Figure 4
shows that the paths calculated using the generalized FMM (upper panel) and
Newton’s equation (lower panel) are very similar. The same holds for the true
least-τ (n = − 12) reaction paths (figure 5): the generalized FMM paths are
very similar to the MD paths. Thus, we can interpret the generalized FMM as
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Figure 4. Reaction paths (n = − 1 (equation (8))) at E = 4.0 kcal/mol calculated by the generalized
FMM (top panel) and the MD trajectories (bottom panel) plotted on the potential energy surface.
Reaction paths are labeled as C(1), C(2) and C(3) which correspond to the path C −→ A, D −→ C
and D −→ B (see figure 1). We have used the level curves corresponding to the initial points A, C
and B for calculating the RPs C(1), C(2) and C(3) respectively. The corresponding MD trajectories

(bottom panel) are labeled as C(1)
M D , C(2)

M D and C(3)
M D .
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Figure 5. Reaction paths (n = −12 (equation (8))) at E = 4.0 kcal/mol calculated by the generalized
FMM (top panel) and the MD trajectories (bottom panel) plotted on the potential energy surface.

Path labels are as in figure 4.



B.K. Dey et al. / Fast marching method 17

Figure 6. Least-τ reaction paths for n = − 1 (least-time) (label Cτ
1) and n = − 12 (least potential)

(label Cτ
2) at E = 4.0 kcal/mol. Path Cτ

1 is related to the intrinsic reaction coordinate. The unlabeled
path, Cτ

3 , is a sketch of what a least-time trajectory that passed through multiple wells might look
like.

a method for identifying the “optimum initial conditions” – the value of the
position and the momentum that causes the MD trajectory to proceed from
reactant to product in the least-τ manner. The MD paths shown in the lower
panel of figures 4 and 5 were calculated by solving Newton’s equations of motion
with an initial position, Q(0) and momenta vector, p(0) = ∇S(0) calculated on a
point very close to Q0 (only the magnitude of ∇S is defined at the initial point).

As a by-product of the generalized FMM we calculate the least-time (Cτ
1 in

figure 6) and least-τ (n = −12) (Cτ
2 in figure 6) paths which do not correspond to

MD trajectories. These paths were calculated by following the normal ∇τ/|∇τ |
on the level curves of τ . The least-time path (Cτ

1 in figure 6) (brachistochrone)
cuts the corner of the energy barrier in order to get to one point from the other
in the potential energy surface. The least-τ path with the most negative n (e.g.,
n = −12 in our calculation for Cτ

2 in figure 6) approaches the least-potential path
and approximates the intrinsic reaction coordinate [37]. Figure 6 reveals that the
least-τ (n = − 12) path from A to B passes through the local potential minima
(reaction intermediates, D and C) and the saddle points in the PES (transition
states T4, T3 and T1).

Reaction paths (C (1), C (2), C (3), Cτ
1 , Cτ

2 ) calculated using the generalized
FMM filter out the unwanted high frequency motions and help us identify
the important coordinates associated with a given dynamical change. This con-
cept of important coordinates has been frequently used by many workers to
describe the long time-scale dynamics [38–40]. Filtering out the high frequency
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Figure 7. Action level curves for n = − 1 at E = 4.0 kcal/mol and the normal vectors plotted in
the (x,y) plane. The upper panel is for the initial state Q0 =[1.29, −1.65]T and the lower panel for

Q0 = [1.4, 1.78]T . The long vector line shows the crest formation in the level curves.

oscillations and creating a reduced-coordinate space for studying reaction events
has always been a physically appealing approximation. For example, in bond
stretching, the spatial deviation of bonds from their equilibrium position is com-
paratively small and during the time-scale of a reactive event these rapid oscil-
lations nearly average out. Using the reaction paths described above one can
expect to see some quantitative deviation of some of the properties, however,
many of the properties related to kinetics (e.g., reaction rate, activation energy)
can be easily calculated with these reaction paths since the computed paths are
qualitatively similar to an average over MD trajectories.

In figures 4 and 5 we have shown the true reaction paths (that is, paths
which can be obtained as the MD trajectories) which only connect the two near-
est local minima through a transition state. In this example, the method is unable
to find true reaction paths connecting more than two minima. To see why this is
so, in figure 7 we show the action level curves at E = 4.0 kcal/mol for n = − 1
(equation (8)) for two different initial points namely, Q0 = [1.29, −1.65]T (point
A in figure 3) and Q0 =[1.4, 1.78]T (point B in figure 3). Using the projected
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Figure 8. Least-τ level curves at E = 4.0 kcal/mol and the normal vectors plotted in the (x, y) plane.
The curves are for the initial point Q0 =[1.29, −1.65]T .

normal vectors in figure 7, one can visualize possible paths connecting any two
points: start from the final state, and trace backwards (from tail to head) along
the projected normal vectors, thereby connecting the final to the initial state.
Using this procedure, it is easy to visualize paths connecting C −→ A (upper
panel of figure 7) and D −→ B (lower panel of figure 7).

Sometimes, this procedure does not work. In some places, level curves of
the action form a crest, and the tails of the projected normal vectors on one
side of the crest do not connect with the heads of vectors on the other side
of the crest. This indicates that there is no way to find a path across the crest.
This situation does not arise in the least-τ level curves: as shown in figure 8 for
n = −1 and n = −12, the least-τ paths connecting the points A and B (see figure
3 for the definition of points on the PES) are easily computed.

An apparent limitation of the present method is the inability to find paths
connecting more than two local minima in the PES. This is attributed to the for-
mation of a crest and the momenta mismatch across it, as shown in figure 7. The
crest arises because of a weakness in the fast-marching algorithm. Our general-
ized fast-marching algorithm assumes that each configuration is visited exactly
once, and assigns the τ value to that configuration accordingly. When the reac-
tion path goes around a corner, like in figure 7, this is not true and we would
need to keep track of multiple values of τ at each grid point. That is, we have
a trajectory-crossing problem. Distinct least-time trajectories (each with the same
initial point, but different final points) may cross. At the point where trajectories
cross, there are multiple values of τ , one for each trajectory. The fast-marching
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method only keeps track of the smallest value of τ , which makes it impossible
to construct the other (and slower) trajectories.

As an example, consider the least-time trajectory from the initial point (A)
to the final point (B); the path is sketched as path Cτ

3 in figure 6 and the
level curves for the action computed by the generalized fast-marching method
are plotted in the upper panel of figure 7. In passing from A to B, the trajec-
tory must pass through the first transition state (T1), visit the repulsive wall at
the bottom of the potential, go back through the vicinity of the first reactive
intermediate (C), pass through the second transition state region (T3), and hit
the repulsive wall on the far left of the potential, which redirects the trajectory
through the region of the second reactive intermediate (D) and over the final
barrier (T4) to the product well (B). In the vicinity of the first transition state,
T1, this path crosses the least-τ trajectory between the reactant (A) and the first
reactive intermediate (C). The generalized fast-marching method only constructs
the least-τ path to this “crossing point”, so the path Cτ

3 cannot be constructed
with the present algorithm. (The values of τ along the Cτ

3 trajectory are usu-
ally greater than those on other least-τ paths, because this trajectory visits high-
potential regions when it “turns corners.” Classical trajectories may be likened
to vehicles without steering systems—the only way to change direction is via a
“banked” curve, which is what the repulsive regions of the potential provide.) In
order to reproduce such trajectories, one must be able to keep track of not only
the least-τ value at each grid point, but also the values relevant for other trajec-
tories.

An alternative perspective is directly relevant to the interpretation of the
crest. Due to the need for trajectories to “swerve” in order to go around corners,
it is possible that the least-τ paths to two adjacent grid points are qualitatively
different. The crests in figure 7 occur where there is a discontinuity between
“direct” trajectories to a given grid point and “indirect” (i.e., “bank shots”) tra-
jectories: on the lower side of the crest in figure 7a the trajectories are direct,
on the upper side, the least-τ trajectories (which are not found by the present
method) are indirect.

To extend the method, then, we need to include the possibility of such
“indirect” trajectories. The method for doing this is conceptually simple, although
it is so tedious that we have not implemented it. Denoting the path from Q0 to
Q f as s(Θ), we minimize

τn(s) =
∫ Θ f

Θ0

|∇s (Θ)| · [2 (E − V (s (Θ)))]n/2 dΘ (A) (27)

with respect to the path s(Θ), subject to the constraint that the action,

S (s) =
∫ Θ f

Θ0

|∇s (Θ)|
[2 (E − V (s(Θ)))]−1/2

dΘ, (B) (28)
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is stationary. This is a non-standard minimization problem. The fast-march-
ing technique for τn (as sketched above, with the only change being that τn
is now determined by equation (27), instead of using equations (17)–(20)) will
often give a good guess for s(Θ) (excepting regions near crests, we expect that
least-τn trajectories to adjacent points will be similar, and thus provide good
“initial guesses” for s(Θ)). Still, the task of minimizing τn(s) subject to the sta-
tionary action constraint will not always be easy (it would probably be particu-
larly challenging near the crests in figure 7) and it is not clear how one should
formulate this problem computationally. Accordingly, this approach should not
be regarded, at present, as anything more than a formal solution to the prob-
lem of finding least-τn trajectories. The prohibitive cost of such a technique (it
would require evaluating and optimizing a number of path integrals, as opposed
to the fast equation solving and sorting associated with fast-marching methods)
suggests that such studies should not be lightly undertaken.

4. Discussion

The determination of chemical reaction paths is a central problem in mech-
anistic chemistry and chemical kinetics. In this paper, we have presented a
new technique for calculating reaction paths. Like reaction paths from molec-
ular-dynamics simulation, these paths are trajectories – solutions of Newton’s
equations of motion for the atomic nuclei. Unlike molecular-dynamics trajec-
tories, these paths proceed directly from reactant to product, with a minimum
of “rattling around” in the reactant well; in this sense, the paths resemble min-
imum-energy paths and other, similar, definitions of the reaction coordinate.
The reaction paths constructed by our approach combine the desirable features
of both these approaches: they possess the conceptual simplicity of reaction-
coordinate definitions yet, because they are trajectories, still contain dynamical
information.

Our computational method is based on solving the Hamilton-Jacobi equa-
tion for the action using a generalized fast-marching method. This is the first
algorithm of which we are aware which, starting from the reactant, finds the path
that minimizes one observable (e.g., the transit time) while satisfying the Hamil-
ton-Jacobi equation associated with a different observable (e.g., the action). (This
contrasts to existing fast-marching algorithms, where the minimization and the
Hamilton-Jacobi equation are associated with the same observable.) Not only
is the generalized fast-marching method computationally efficient, it has several
desirable features. First and foremost, it relies only on the reactant configuration:
one does not need to know the product, transition state, or mechanism of the
reaction in order to describe the path. In this sense the proposed method is more
like molecular dynamics simulation (which can “predict” the product of a chem-
ical reaction) and less like most extant methods for finding chemical reaction
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coordinates (which usually require knowledge of reactive intermediates and/or
transition states). A second advantage of this method, useful in some contexts, is
that there is no time-step; instead, there is a spatial step (determined, in the pres-
ent paper, by the grid spacing). This has potential advantages in contexts where
different molecular motions span a broad range of time scales, as short time
steps would correspond to a very fine spatial resolution of the slower molecular
processes [27].

After constructing a trajectory with the generalized fast marching method
presented here, it is easy to confirm that the trajectory is, in fact, a solution
of Newton’s equations of motion. In effect, the fast-marching method has
determined the “best” value for the initial momentum and the resulting “ballis-
tic trajectory” will start from the reactant conformation and pass to the product
state with minimal “rattling around” in the reactant well of the potential energy
surface. The sense in which the trajectory is optimal is changed by adjusting the
value of n in equation (19). For example, for n = 0, the shortest (least-distance)
trajectory is found. The most interesting case is probably n = −1, which gives the
least-time trajectory. Because the reaction occurs faster along this trajectory than
any other, more product is formed along the least-time trajectory than along any
other path. (We assume that all directions for the initial momentum vector are
equally likely.) Such paths are of fundamental interest in chemical kinetics.

Determining the reactive intermediates, products, and paths necessitates
exploration of the entire conformational space; the size of the space (and the
number of potential intermediates) grows exponentially with increasing dimen-
sionality. There can be no algorithm with subexponential scaling, because the
inherent difficulty of the problem grows exponentially with the dimension. One
advantage of the present approach is that it provides a “guaranteed best path”,
as opposed to approaches formulating the dynamics as an initial value problem,
which provide a probabilistic guarantee of a full sampling of all the conforma-
tional possibilities only in the long-simulation limit (or, alternatively, using an
arbitrarily large number of shorter simulations, each with different initial con-
ditions). (That is, one must construct an “ensemble”.) Even for small systems,
practical calculations never reach these limits.

The present approach is an alternative to the usual initial value formula-
tion of molecular dynamics. The more complete and systematic exploration of
the conformational space that is achieved by the fast marching approach, seems
desirable. Clearly, any method like this one depends on the ability to describe
systems with reduced dimensionality. This is an active area of research, and
we note that the dimension reduction technique of Rabitz and coworkers [40]
and the essential molecular dynamics approach of Berendsen [38] are key devel-
opments. In order to reduce the dimensionality of the system, one must use
chemical principles to select a few key coordinates, which are believed to be
potential reactive modes. (The identification of reactive modes merely requires
that one follow the familiar paths of reasoning associated with proposing
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plausible reaction mechanisms. Computational approaches also exist [45].) Such
insights are the foundation of much recent work on dynamics using “reduced
potential energy surfaces”, with the work of Parrinello meriting special men-
tion. The key idea, which is very old, is that a “reduced potential energy
surface” or a “potential of mean force” surface can be defined for a few key
coordinates by minimizing the energy with respect to the remaining coordinates
(for the minimum potential energy surface) or performing a statistical average
over the remaining coordinates (for the potential of mean force). Dynamics can
then be performed for the “key” chemical coordinates that remain, using the
“effective potential energy surface” for the system with reduced dimensionality.

The “hills” method, as developed by Parrinello and coworkers [41–44], is
an excellent recent example of this approach. Our approach is an alternative to
that approach because it uses the true potential energy surface and a boundary-
value formulation of the dynamical problem. Unlike a trajectory, which grows
one point at a time, a “front” moves forward many points at a time, so we
believe our method is more amenable to parallelization than molecular-dynamics
based approaches on reduced potential energy surfaces. Unlike the trajectories
located by methods that perturb the potential energy surface, the trajectories in
our model are “true”, insofar as they are exact Newtonian trajectories on the
potential energy surface. (Although, if one is using a “reduced-dimension” sur-
face, the trajectories would not quite be the solutions to the Newton’s equations
for the full-dimensional system.)

A few additional words about the present method, as opposed to the
approaches based on molecular dynamics or statistical sampling, bear mention-
ing. The great advantage of such “stochastic” methods for characterizing the
ensemble of possible reaction paths and reactive intermediates is that they are
directly applicable to larger systems. However, such methods give only probabi-
listic errors, and converge exponentially slowly in the worst-case, reflecting the
inherent exponential difficulty of the underlying problem. A deterministic algo-
rithm like this one is directly applicable only to small systems because it scales
exponentially even for favorable potential energy surfaces where stochastic meth-
ods work satisfactorily. Because this deterministic approach rigorously converges
to the correct answer even in the worst case, it can be used to establish the
robustness of more efficient non-deterministic approaches. As already mentioned,
for larger systems the fast-marching approach is not directly applicable. How-
ever, by using reduced-dimensionality potential energy surfaces, it can be applied
to large systems. For large systems, however, the computational philosophy of
deterministic and stochastic methods is more complementary, so direct compari-
son of the results is not practical. (However, results from one type of calculation
could certainly be used to inform the initialization of alternative techniques.)

In this work, however, we are not focused on large molecules whose dimen-
sionality has been reduced, but the theoretical and mathematical underpinnings
of our method. For this reason, we are concentrating on a simple example to
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elucidate the key ideas and demonstrate the validity of our approach. It is cer-
tainly possible to extend the method to more than two dimensions, and this
will be necessary for our targeted applications in enzyme catalysis (where there
are often several important collective coordinates). Quite generally, the cost of
exploring the conformational space grows exponential with the dimension of the
space (kd -type scaling). If there are N = kd important conformations, then our
method scales as N log N (which depends on dimensionality like d(kd)). This
limit is larger than the theoretical limit by a factor of log N , but we doubt that
the theoretical limit can be practically achieved. (It should be noted that even
though the present method scales exponentially with increasing dimension, non-
fast marching approaches are exponentially worse, with typical scaling N 2 = k2d .)
We are currently exploring various schemes for dimensional reduction, so that
we can consider only the essential degrees of freedom to our system. In addi-
tion, though we can never hope to eliminate the exponential scaling of this (or
any other) approach, we are attempting to mitigate it using adaptive grids, and
more sophisticated upwind differentiation formulas. Finally, we are starting to
build interfaces between this program and commercial computational chemistry
programs, so that we can begin to apply this approach to realistic chemical sys-
tems. We will report on all these additional developments as the results become
available.
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